terça-feira, 3 de março de 2015

Planejamento ótimo

peter-ertl.com

Imagine que existe uma rede de monitoramento da poluição em uma grande cidade e deseja-se acrescentar uma nova estação de monitoramento. Onde coloca-la? A resposta que vem logo à mente é: em uma região onde não existam outras estações. Assim, se teria um apanhado melhor (ou mais completo) de como varia a poluição nessa cidade. Pensando um pouco mais, é fácil ver que essa não é a melhor resposta. Alias, é fácil ver que não existe uma melhor resposta se o problema for colocado nesse nível de generalidade. Tudo depende do objetivo que se deseja alcançar com essa nova estação. 

Se o objetivo for mesmo o de conhecer melhor como varia a poluição, pode-se traduzir matematicamente esse desejo em uma diminuição global da variância sobre toda. Nesse caso, o local ótimo provavelmente coincidirá com a resposta ingênua e a melhor localização será em alguma região onde não existe outras estações. Imagine agora que o objetivo dessa nova estação é aumentar as chances de encontrar onde ficam os níveis mais altos de poluição. Nesse caso, é relativamente óbvio que a estação deve ser colocada em torno dos locais onde estão sendo observados níveis mais altos de poluição. 

O último exemplo pode parecer artificial no contexto de monitoramento de poluição. Mas ele se encaixa de forma perfeita no contexto de mineração, já aludido anteriomente aqui no StatPop. Nesse contexto, o novo local é a posição de uma nova mina dentro de uma área de mineração. É muito caro abrir uma mina e o principal objetivo é encontrar locais com mais teor do minério sendo explorado. Faz todo sentido querer que o novo local aqui maximize o potencial de comercialização das extrações lá realizadas.

Assim, existem várias situações onde a questão da colocação de uma nova unidade observacional é altamente relevante. As questões da monitoração da poluição e da mineração são apenas 2 exemplos. A área da Estatística que estuda essa questão é conhecida como planejamento ótimo. Várias técnicas foram propostas para lidar com esse tipo de problema e encontrar soluções gerais. Como já deve ter transparecido, essa é uma área onde a componente computacional é muito forte pois tem-se que resolver uma maximização, com respeito a algum critério que já vimos que pode variar de estudo para estudo, e essa maximização raramente é realizável de forma exata. 

O problema como colocado acima já tem uma razoável complexidade. Na prática, o problema é ainda mais complicado. Não é necessariamente melhor pensar em apenas uma nova localização mas em uma série de localizações. Questões a ser respondida seriam:

  1. é melhor colocar uma nova estação de monitoramento ou 2 novas estações?
  2. se formos colocar mais de uma estação, seria melhor coloca-las na mesma região ou em regiões diferentes?
  3. qual o número ótimo de estações a ser colocadas? Afinal, quanto mais estações novas forem colocadas, mais informação receberemos. (A figura acima ilustra uma escolha de pontos ótimos num contexto de experimentação química.)


A última questão traz à tona um outro complicador que infelizmente está quase sempre presente: custo. Muitas vezes não é possível dissociar essa busca de novos locais dos custos associados à obtenção da informação neles contida. Ao fazer isso, novos problemas surgem. Além de contemplar onde será colocada a(s) nova(s) estação(ões) e quantas serão, podemos contemplar a possibilidade de remoção de alguma(s) das atuais estações de monitoramento. Isso complica ainda mais a obtenção de uma solução satisfatória, mesmo que a estrutura do custo seja muito simples. E normalmente ela não é pois locais menos acessíveis certamente terão custo mais elevado.

Em resumo, trata-se de uma área relevante da Estatística que tem encontrado utilizações relevantes em variados setores da Estatística, como regressão, séries temporais e estatística espacial e com aplicações importantes a diversas áreas da Ciência, como ilustrado no início dessa postagem. Apesar da área já estar estabelecida há algumas décadas, ainda se pode encontrar avanços relevantes nos dias de hoje, como será ilustrado na postagem da próxima semana.

Nenhum comentário:

Postar um comentário